Argon Implanted into Graphite, by XPS

B. Vincent Crist

Citation: Surf. Sci. Spectra 1, 376 (1992); doi: 10.1116/1.1247636
View online: http://dx.doi.org/10.1116/1.1247636
View Table of Contents: http://avspublications.org/resource/1/SSSPEN/v1/i4
Published by the AVS: Science & Technology of Materials, Interfaces, and Processing

Related Articles
Photoemission band mapping with a tunable femtosecond source using nonequilibrium absorption resonances

Characterization of geometrical factors for quantitative angle-resolved photoelectron spectroscopy

Direct measurement of quasiparticle lifetimes in graphene using time-resolved photoemission

Ultrahigh vacuum sample mount for x-ray photoelectron spectroscopy up to very high temperature (150–1400 K)

Characterization of Cr(III) Compounds of O, OH, F and Cl by XPS

Additional information on Surf. Sci. Spectra
Journal Homepage: http://avspublications.org/sss
Journal Information: http://avspublications.org/sss/about/about_the_journal
Top downloads: http://avspublications.org/sss/sss/top_20_most_downloaded
Information for Authors: http://avspublications.org/sss/authors/information_for_contributors

ADVERTISEMENT

Instruments for advanced science

Gas Analysis
- Dynamic measurement of rarefied gas streams
- Adsorption and thermal desorption
- Molecular beam studies
- Adsorption isotherm studies
- Environmental and operando studies

Surface Science
- LAMMA TOF
- SIMS
- Near and far detection in low vacuum with high spatial resolution
- Surface mapping and elemental imaging

Plasma Diagnostics
- Plasma source characterization
- Cathode and anode processes
- Reaction kinetics studies
- Analysis of neutral and radical species

Vacuum Analysis
- Partial pressure measurement and control of process gases
- Reactive sputter process control
- Vacuum diagnostics
- Vacuum coating process monitoring

contact Hiden Analytical for further details
www.HidenAnalytical.com

info@hideninc.com

CLICK to view our product catalogue
Argon Implanted Into Graphite, by XPS

B. Vincent Crist

Hakuto Co. Ltd., P.O. Box 25, Tokyo 160, Japan

Argon ions (Ar⁺) were implanted into a substrate of natural graphite (crystal) by 4 kV acceleration for a period of 5 min using a VG EX05 ion gun. (The surface plane of the substrate was perpendicular to the flight path of the argon ions.) No attempt was made to maximize the argon concentration within the graphite. The resulting concentration of argon within the graphite surface was approximately 4.0 at. %. The BE for Ar 2p3 is 241.7 eV which is similar to the 241.9 eV in silicon (Si) obtained by Perkin Elmer [see J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. O. Bomben, _Handbook of X-ray Photoelectron Spectroscopy_, 2nd ed. (Perkin-Elmer Corporation, Eden Prairie, MN, 1992), p. 65].

Keywords: argon; Ar; XPS; ion implant; graphite

PACS: 79.60.-i, 82.80.Pv, 61.70.Vn

SPECIMEN DESCRIPTION

Host Material: natural graphite crystal

CAS Registry #: 7440-37-1

Host Material Characteristics: inhomogeneous; solid; polycrystalline; conductor; inorganic compound

Chemical Name: graphite

Source: Onozato Sanko Co. supplied 99.999 + % argon gas

Host Composition: C, II

Form: natural crystal with bubblelike surface

Structure: argon/graphite

History & Significance: The as received graphite sample had a trace of sulfur which was removed by ion etching. Subsequent to the etching, trace amounts of oxygen and nitrogen were found. The argon gas was of 99.999 + % purity.

As Received Condition: An irregular sized piece of natural graphite crystal was implanted with argon ions obtained by accelerating the ions to 4 kV.

Analyzed Region: The analyzed region was at the center of the 4 × 4 mm area that was implanted with argon ions.

Ex Situ Preparation/Mounting: The graphite substrate, held down by a screw and a washer, was mounted and implanted as received, without any cleaning or other ex situ treatment.

In Situ Preparation: While the graphite substrate was in the analysis chamber, the argon ions were implanted during a 5 min period into a 4 × 4 mm area at a 90° angle of incidence by using a 4 kV acceleration potential, and 1.5 × 10⁻⁷ Torr total pressure within the analysis chamber.

Charge Control: none

Temp. During Analysis: 300 K

Pressure During Analysis: <1×10⁻⁶ Pa

INSTRUMENT PARAMETERS COMMON TO ALL SPECTRA

Spectrometer

Analyzer Mode: constant pass energy

Throughput (T=Æ): The instrument throughput function (ITF) depends on pass energy and the lens voltages. For a 150 eV pass energy the ITF is Æ¹⁴ while the 50 eV pass energy has an ITF of Æ⁰³.

Excitation Source: Al Kα, monochromatic

Excitation Source Window: 0.2 μm Al

Source Energy: 1486.7 eV

Source Strength: 200 W

Source Beam Size: 250 μm × 700 μm

Analyzer Width at 1000 eV: 2000 μm × 2000 μm

Signal Mode: multichannel direct

Simultaneous Channels: 128

Geometry

Incident Angle: 20°

Source to Analyzer Angle: 71°

Emission Angle: 0°

Specimen Azimuthal Angle: 90°

Acceptance Angle from Analyzer Axis: 0°

Analyzer Angular Acceptance Width: 30° × 30°

Comments: Sampling depth was at its maximum which provides subsurface bulk information.

Ion Gun

Manufacturer and Model: Vacuum Generators EX-05

Energy: 4000 eV

Current: 5 μA

Current Measurement Method: biased stage

Sputtering Species: Ar⁺

Spot Size (un rastered): 500 μm

Raster Size: 4000 μm × 4000 μm

Incident Angle: 0°
Polar Angle: 71°
Azimuthal Angle: 180°

DATA ANALYSIS METHOD

Peak Shape and Background Method: Background counts were removed from each channel by subtracting the counts found in the lowest intensity channel. A Shirley-type background-baseline function and a Voight peak shape function were used to fit the high resolution data.

Quantitation Method: Relative sensitivity factors, which were used to estimate the atomic percentage of each element, were calculated by modifying the photoionization cross sections calculated by J. H. Scofield (Ref. 1) in accordance with "standard" algorithms supplied by the instrument manufacturer.

REFERENCES

SPECTRAL FEATURES TABLE

<table>
<thead>
<tr>
<th>Spectrum ID #</th>
<th>Element/Transition</th>
<th>Peak Energy (eV)</th>
<th>Peak Width FWHM (eV)</th>
<th>Peak Area (counts)</th>
<th>Sensitivity Factor</th>
<th>Concentration (at. %)</th>
<th>Peak Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ar 2p_{3/2,1/2}</td>
<td>242 ± 1</td>
<td>...</td>
<td>31861</td>
<td>3.19</td>
<td>4.1</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>C 1s</td>
<td>285 ± 1</td>
<td>...</td>
<td>233917</td>
<td>1.00</td>
<td>95.9</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>Ar 2s</td>
<td>320 ± 1</td>
<td>...</td>
<td>14344</td>
<td>1.89</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>Ar 2p_{3/2}</td>
<td>241.79 ± 0.05</td>
<td>0.89</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>Ar 2p_{1/2}</td>
<td>243.93 ± 0.05</td>
<td>0.87</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>Ar 2s</td>
<td>319.56 ± 0.05</td>
<td>2.4</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>C 1s</td>
<td>284.53 ± 0.05</td>
<td>1.6</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Footnote to Spectrum 00063-04: The asymmetry of this peak is attributed to the damage caused by the ion etching. Plasmons originating from the bulk were found at ~312.7 eV and 346.3 eV.

Footnote to Spectrum 00063-05: The 3p_{3/2,1/2} and 3s signals for argon are located at 9 and 23 eV on top of the valence band structure of ion etched graphite, which has a maximum at approximately 19 eV.

ANALYZER CALIBRATION TABLE

<table>
<thead>
<tr>
<th>Spectrum ID #</th>
<th>Element/Transition</th>
<th>Peak Energy (eV)</th>
<th>Peak Width FWHM (eV)</th>
<th>Peak Area (counts)</th>
<th>Sensitivity Factor</th>
<th>Concentration (at. %)</th>
<th>Peak Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Cu 2p_{3/2}</td>
<td>932.70 ± 0.05</td>
<td>1.02</td>
<td>1175500</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>Au 4f_{7/2}</td>
<td>84.01 ± 0.05</td>
<td>0.82</td>
<td>1200555</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>Ag 3d_{5/2}</td>
<td>368.31 ± 0.05</td>
<td>0.70</td>
<td>1241190</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

*Experimental results gave 932.73 eV for Cu 2p_{3/2}.
*Experimental results gave 84.04 eV for Au 4f_{7/2}.
*Experimental results gave 368.35 eV for Ag 3d_{5/2}.
Accession #: 00063-02
Host Material: natural graphite crystal
Technique: XPS
Spectral Region: Ar 2P_{3/2}

Variables:
- Instrument: Fisons Instruments S-Probe E-2703
- Excitation Source: Al Kα monochromatic
- Source Energy: 1486.7 eV
- Source Strength: 200 W
- Source Size: 250 μm x 700 μm
- Incident Angle: 20°
- Analyzer Type: spherical sector
- Analyzer Pass Energy: 50 eV
- Analyzer Resolution: 0.50 eV
- Emission Angle: 0°
- Data Acquisition Time: 800 s
- Dead Time Correction: none
- Number of Scans: 20

Comment:

Accession #: 00063-03
Host Material: natural graphite crystal
Technique: XPS
Spectral Region: Ar 2s

Variables:
- Instrument: Fisons Instruments S-Probe E-2703
- Excitation Source: Al Kα monochromatic
- Source Energy: 1486.7 eV
- Source Strength: 200 W
- Source Size: 250 μm x 700 μm
- Incident Angle: 20°
- Analyzer Type: spherical sector
- Analyzer Pass Energy: 50 eV
- Analyzer Resolution: 0.50 eV
- Emission Angle: 0°
- Data Acquisition Time: 841 s
- Dead Time Correction: none
- Number of Scans: 14

Comment: The curved background is due to the overlap of the Ar 2s signal with the energy loss envelope of the C 1s signal.
Acquisition #: 00063-04
Host Material: natural graphite crystal
Technique: XPS
Spectral Region: C 1s
Instrument: Fisons Instruments S-Probe E-2703
Excitation Source: Al K\(_\alpha\) monochromatic
Source Energy: 1486.7 eV
Source Strength: 200 W
Source Size: 250 \(\mu\)m \(\times\) 700 \(\mu\)m
Incident Angle: 20°
Analyzer Type: spherical sector
Analyzer Pass Energy: 50 eV
Analyzer Resolution: 0.50 eV
Emission Angle: 0°
Data Acquisition Time: 100 s
Dead Time Correction: none
Number of Scans: 5
Comment: See footnote below the Spectral Features Table.

Acquisition #: 00063-05
Host Material: natural graphite crystal
Technique: XPS
Spectral Region: valence band
Instrument: Fisons Instruments S-Probe E-2703
Excitation Source: Al K\(_\alpha\) monochromatic
Source Energy: 1486.7 eV
Source Strength: 200 W
Source Size: 250 \(\mu\)m \(\times\) 700 \(\mu\)m
Incident Angle: 20°
Analyzer Type: spherical sector
Analyzer Pass Energy: 150 eV
Analyzer Resolution: 1.5 eV
Emission Angle: 0°
Data Acquisition Time: 1500 s
Dead Time Correction: none
Number of Scans: 15
Comment: See footnote below the Spectral Features Table.